Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco.

نویسندگان

  • Fangfang Li
  • Weidi Wang
  • Nan Zhao
  • Bingguang Xiao
  • Peijian Cao
  • Xingfu Wu
  • Chuyu Ye
  • Enhui Shen
  • Jie Qiu
  • Qian-Hao Zhu
  • Jiahua Xie
  • Xueping Zhou
  • Longjiang Fan
چکیده

The interaction between noncoding endogenous target mimicry (eTM) and its corresponding microRNA (miRNA) is a newly discovered regulatory mechanism and plays pivotal roles in various biological processes in plants. Tobacco (Nicotiana tabacum) is a model plant for studying secondary metabolite alkaloids, of which nicotine accounts for approximately 90%. In this work, we identified four unique tobacco-specific miRNAs that were predicted to target key genes of the nicotine biosynthesis and catabolism pathways and an eTM, novel tobacco miRNA (nta)-eTMX27, for nta-miRX27 that targets QUINOLINATE PHOSPHORIBOSYLTRANSFERASE2 (QPT2) encoding a quinolinate phosphoribosyltransferase. The expression level of nta-miRX27 was significantly down-regulated, while that of QPT2 and nta-eTMX27 was significantly up-regulated after topping, and consequently, nicotine content increased in the topping-treated plants. The topping-induced down-regulation of nta-miRX27 and up-regulation of QPT2 were only observed in plants with a functional nta-eTMX27 but not in transgenic plants containing an RNA interference construct targeting nta-eTMX27. Our results demonstrated that enhanced nicotine biosynthesis in the topping-treated tobacco plants is achieved by nta-eTMX27-mediated inhibition of the expression and functions of nta-miRX27. To our knowledge, this is the first report about regulation of secondary metabolite biosynthesis by an miRNA-eTM regulatory module in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereo-Specific Transcript Regulation of the Polyamine Biosynthesis Genes by Enantiomers of Ornithine in Tobacco Cell Culture

Background: Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Physiological response of the plant cells to its two enantiomers have not been widely investigated yet.Objectives: This study aimed to evaluate effect of ornithine enantiomers on exp...

متن کامل

Jasmonate-induced nicotine formation in tobacco is mediated by tobacco COI1 and JAZ genes.

Biosynthesis of many plant alkaloids is enhanced by endogenous accumulation and exogenous application of jasmonates, but the general and specific signaling components are not well understood. In Arabidopsis, jasmonate-induced ZIM-domain-containing (JAZ) proteins have recently been found to be critical transcriptional repressors linking CORONATINE INSENSTIVE1 (COI1)-mediated jasmonate perception...

متن کامل

Biotechnological Reduction of Tobacco (Nicotiana Tabacum L.) Toxicity

BACKGROUND: Nicotiana tobacco contains large amounts of alkaloid nicotine. Tobacco plant is used for smoking and causes many health problems since it is high in nicotine which is one of the widely-recognized toxic compounds with serious side effects for different body organs. Reducing nicotine content of this plant is a way to reduce its health hazards in cigarette smokers. Utilizing the new ...

متن کامل

Tobacco nicotine uptake permease regulates the expression of a key transcription factor gene in the nicotine biosynthesis pathway.

The down-regulation of a tobacco (Nicotiana tabacum) plasma membrane-localized nicotine uptake permease, NUP1, was previously reported to reduce total alkaloid levels in tobacco plants. However, it was unclear how this nicotine transporter affected the biosynthesis of the alkaloid nicotine. When NUP1 expression was suppressed in cultured tobacco cells treated with jasmonate, which induces nicot...

متن کامل

Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes.

In Arabidopsis, the MYC2-family basic helix-loop-helix transcription factors mediate transcriptional regulation of jasmonate-responsive genes, and their transcriptional activities are suppressed by physical interactions with jasmonate-ZIM domain (JAZ) proteins. Jasmonate-inducible nicotine formation in Nicotiana plants has been shown to be suppressed by tobacco JAZ proteins, and be regulated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 169 2  شماره 

صفحات  -

تاریخ انتشار 2015